

The Signatures of Baryon Acoustic Oscillations and Primordial Non-gaussianities in the Lyman-alpha forest

Shirley Ho

Lawrence Berkeley National Laboratory

With collaborators:

Anze Slosar, Martin White, Uros Seljak, Vincent Desjacques and Thibaut Louis 10/5/09, Fermilab

Outline

- Motivations
- Introduction (What is Lyman-alpha forest?)
- What can you do with Lyman-alpha forest?
 - —Baryon Acoustic Oscillations
 - Dark Energy
 - —Scale Dependent Bias
 - Primordial Non-gaussianities (f_nl)
- Conclusion

AWRENCE BERKELEY

z~0

z~6

z~1100

7~0

z~6

z~1100

Redshift

What happened at the Beginning of the Universe?

Lyman Alpha Forest: what can it do? —Non-gaussianities in Early Universe

parameterize how much non-linear corrections are there to the potential

$$\Phi = \phi + f_N L \phi^2$$

Primordial potential (assumed to be gaussian random field)

Lyman Alpha Forest: what can it do? —Non-gaussianities in Early Universe

parameterize how much non-linear corrections are there to the potential

$$\Phi = \phi + f_N L \phi^2$$

Primordial potential (assumed to be gaussian random field)

Non-Gaussianity from Inflation

 $f_{_{NL}} \sim 0.05$ canonical inflation (single field, couple of derivatives)

(Maldacena 2003, Acquaviva etal 2003)

 $f_{NL} \sim 0.1$ --100 higher order derivatives

DBI inflation (Alishahiha, Silverstein and Tong 2004)

UV cutoff (Craminelli and Cosmol, 2003)

 $f_{NII} > 10$ curvaton models (Lyth, Ungarelli and Wands, 2003)

 f_{NI} ~100 ghost inflation (Arkani-Hamed et al., Cosmol, 2004)

Lyman Alpha Forest: what can it do? —Non-gaussianities in Early Universe

Outline

- Motivations
- Introduction (What is Lyman-alpha forest?)
- What can you do with Lyman-alpha forest?
 - —Baryon Acoustic Oscillations
 - Dark Energy
 - —Scale Dependent Bias
 - Primordial Non-gaussianities (f_nl)
- Conclusion

Outline

- Motivations
- Introduction (What is Lyman-alpha forest?)
- What can you do with Lyman-alpha forest?
 - —Baryon Acoustic Oscillations
 - Dark Energy
 - —Scale Dependent Bias
 - Primordial Non-gaussianities (f_nl)
- Conclusion

What are baryon acoustic oscillations (BAO)?

These fluctuations of 1 part in 10⁵ gravitationally grow into...

This sound wave can be used as a "standard ruler"

Dark energy changes this apparent ruler size

Courtesy slide from David Schlegel

What are baryon acoustic oscillations (BAO)?

These fluctuations of 1 part in 10⁵ gravitationally grow into...

Eisenstein et al. 2005

60 80 100

200

r (h/Mpc)

40

Comoving Separation (h-1 Mpc)

Universe today (galaxy map)

-50

-100

ed as a "standard ruler" apparent ruler size

Padmanabhan et al. 2006

Courtesy slide from David Schlegel

LAWRENCE BERKELEY NATIONAL LABORATORY

Dark Energy via Baryon Acoustic Oscillations

Dark Energy via Baryon Acoustic Oscillations

How about the resolution effect?

$$\xi_{ff}^{\text{lowres}}(r)/\xi_{ff}(r)$$

resolution 4X worse

resolution 2X worse

Slosar, SH, White & Louis (2009)

How about the resolution effect?

$$\xi_{ff}^{\text{lowres}}(r)/\xi_{ff}(r)$$

resolution 4X worse

resolution 2X worse

Slosar, SH, White & Louis (2009)

Dark Energy via Baryon Acoustic Oscillations

Dark Energy via Baryon Acoustic Oscillations

—the correlation function:

$$\xi_f(r) = \langle \delta_f(\hat{x})\delta_f(\hat{x}+\hat{r}) \rangle$$

Dark Energy via Baryon Acoustic Oscillations

—the correlation function:

Dark Energy via Baryon Acoustic Oscillations

Slosar, SH, White & Louis (2009)

No z-space distortion

z-space distortions

Possible Systematics

- UV background fluctuations
- Metal Line contaminations
- Continuum subtractions
- Other IGM physics? ...

Dark Energy via Baryon Acoustic Oscillations

Dark Energy via Baryon Acoustic Oscillations

BOSS Lyman-alpha forest will hopefully make the first measurement of Dark Energy at z> 2!
BigBOSS Lyman-alpha forest (8 times more QSOs) will make even better measurement of DE at z > 2!

Dark Energy via Baryon Acoustic Oscillations

BOSS Lyman-alpha forest will hopefully make the first measurement of Dark Energy at z> 2!
BigBOSS Lyman-alpha forest (8 times more QSOs) will make even better measurement of DE at z > 2!

Dark Energy via Baryon Acoustic Oscillations

BOSS Lyman-alpha forest will hopefully make the first measurement of Dark Energy at z> 2!

BigBOSS Lyman-alpha forest (8 times more QSOs) will make even better measurement of DE at z > 2!

Outline

- Motivations
- Introduction (What is Lyman-alpha forest?)
- What can you do with Lyman-alpha forest?
 - —Baryon Acoustic Oscillations
 - Dark Energy
 - —Scale Dependent Bias
 - Primordial Non-gaussianities (f_nl)
- Conclusion

Lyman Alpha Forest: what can it do? —Non-gaussianities in Early Universe

LAWRENCE BERKELEY NATIONAL LABORATORY

Dark Energy via Baryon Acoustic Oscillations

Dark Energy via Baryon Acoustic Oscillations

What can we do with Lya and fnl?

SH, Slosar, Seljak & Desjacques (in prep)

What can we do with Lya and fnl?

SH, Slosar, Seljak & Desjacques (in prep)

Conclusion

- Lyman-alpha forest in BOSS and BigBOSS will (hopefully) do the following:
 - —Lya BAO to measure Dark Energy at z>2
 - —Lya probes non-gaussianity of the Early Universe
 - —Other applications:
 - Lya P(k) tighten the cosmological constraints
 - temperature density relation in the IGM
 - finding missing baryons at higher z

FIG. 2: The cross-correlation coefficient between the flux in our low and high resolution boxes, $\sqrt{\xi_{lh}^2/\xi_{ll}\xi_{hh}}$. Red points show the result for the two low resolution boxes having twice the smoothing length of the high resolution box, blue is the same for $4\times$ smoothing length.

 Cosmological Constraints from Lyman-alpha power spectrum

 Cosmological constraints from Lyman-alpha power spectrum (with no BAO)

	Planck	Planck + BigBOSS Lya	Planck + BigBOSS Lya + Galaxies
$\sigma(\sum m_{\nu})$	0.307	0.048	0.006
$\sigma(\Omega_K)$	0.011	0.0041	0.00038
$\sigma(n_s)$	0.0034	0.0023	0.001
$\sigma(dn_s/dln(k))$	0.003	0.0028	0.0005

Courtesy from Anze Slosar

Outline

- Motivations
- Introduction (What is Lyman-alpha forest?)
- What can you do with Lyman-alpha forest?
 - -Baryon Acoustic Oscillations -> Dark Energy
 - —Lyman-alpha power spectrum
 - —Non-gaussianities in Early Universe
- Conclusion

Lyman Alpha Forest: what can it do? —Non-gaussianities in Early Universe

Outline

- Motivations
- Introduction (What is Lyman-alpha forest?)
- What can you do with Lyman-alpha forest?
 - -Baryon Acoustic Oscillations -> Dark Energy
 - —Lyman-alpha power spectrum
 - —Non-gaussianities in Early Universe
- Conclusion

Outline

- Motivations
- Introduction (What is Lyman-alpha forest?)
- What can you do with Lyman-alpha forest?
 - -Baryon Acoustic Oscillations -> Dark Energy
 - —Lyman-alpha power spectrum
 - —Non-gaussianities in Early Universe
- Conclusion

- Simulation boxes of Dark matter
- 3000^3 particles 3000^3 mesh $1500 \ (h^{-1}Mpc)^3$ on the side $\Omega_m = 0.25, \ \Omega_{\Lambda} = 0.75, \ h = 0.75, \ n = 0.97, \ \sigma_8 = 0.8$
 - Fluctuating Gunn Peterson approximation Peculiar velocities included

Motivations

AWRENCE BERKELEY

Outline

- Motivations
- Introduction (What is Lyman-alpha forest?)
- What can you do with Lyman-alpha forest?
 - -Baryon Acoustic Oscillations -> Dark Energy
 - —Lyman-alpha power spectrum
 - —Non-gaussianities in Early Universe

Conclusion